Nuclear structure corrections to deuterium hyperfine splitting

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear Structure-Dependent Radiative Corrections to the Hydrogen Hyperfine Splitting

Radiative corrections to the Zemach contribution of the hydrogen hyperfine splitting are calculated. Their contributions amount to −0.63(3) ppm to the HFS. The radiative recoil corrections are estimated to be 0.09(3) ppm and heavy particle vacuum polarization shifts the HFS by 0.10(2) ppm. The status of the nuclear-dependent contributions are considered. From the comparison of theory and experi...

متن کامل

Proton Structure Corrections to Hydrogen Hyperfine Splitting

The largest uncertainty in calculations of hydrogen ground-state hyperfine splitting comes from corrections due to proton stucture. We review these corrections, with special mention of the inelastic, or polarizability, corrections which have been recently re-evaluated. Summing up the arguably best current values for the calculated corrections leaves us 1–2 ppm short of the experimental data. We...

متن کامل

New Evaluation of Proton Structure Corrections to Hydrogen Hyperfine Splitting

We consider the proton structure corrections to hydrogen ground-state hyperfine structure, focusing on a state-of-the-art evaluation of the inelastic nucleon corrections—the polarizability corrections—using analytic fits to the most recent data. We find a value for the fractional correction ∆pol of 1.3 ± 0.3 ppm. This is 1–2 ppm smaller than the value of ∆pol one would deduce using hyperfine sp...

متن کامل

Nuclear structure corrections in muonic deuterium.

The muonic hydrogen experiment measuring the 2P-2S transition energy [R. Pohl et al., Nature (London) 466, 213 (2010)] is significantly discrepant with theoretical predictions based on quantum electrodynamics. A possible approach to resolve this conundrum is to compare experimental values with theoretical predictions in another system, muonic deuterium μD. The only correction which might be que...

متن کامل

Nuclear Corrections to Hyperfine Structure in Light Hydrogenic Atoms

Hyperfine intervals in light hydrogenic atoms and ions are among the most accurately measured quantities in physics. The theory of QED corrections has recently advanced to the point that uncalculated terms for hydrogenic atoms and ions are probably smaller than 0.1 parts per million (ppm), and the experiments are even more accurate. The difference of the experiments and QED theory is interprete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters B

سال: 1996

ISSN: 0370-2693

DOI: 10.1016/0370-2693(95)01354-7